Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process

نویسنده

  • ANDRE PAUSS
چکیده

Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of kLa, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-intensity mixing). Conversely, the limitation is important for poorly soluble gases, such as methane and hydrogen. The latter could be overconcentrated to as much as 80 times the value at thermodynamic equilibrium. Such overconcentrations bring into question the biological interpretations that have been deduced solely from gaseous measurements. Experimental results obtained in three different methanogenic reactors for a wide range of conditions of mixing and gas production confirmed the general existence of low mass transfer coefficients and consequently of large overconcentrations of dissolved methane and hydrogen (up to 12 and 70 times the equilibrium values, respectively). Hydrogen mass transfer coefficients were obtained from the direct measurements of dissolved and gaseous concentrations, while carbon dioxide coefficients were calculated from gas phase composition and calculation of related dissolved concentration. Methane transfer coefficients were based on calculations from the carbon dioxide coefficients. From mass balances performed on a gas bubble during its simulated growth and ascent to the surface of the liquid, the methane and carbon dioxide contents in the gas bubble appeared to be controlled by the bubble growth process, while the bubble ascent was largely responsible for a slight enrichment in hydrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process.

Liquid-to-gas mass transfer in anaerobic processes was investigated theoretically and experimentally. By using the classical definition of k(L)a, the global volumetric mass transfer coefficient, theoretical development of mass balances in such processes demonstrates that the mass transfer of highly soluble gases is not limited in the usual conditions occurring in anaerobic fermentors (low-inten...

متن کامل

Improvement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment

The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...

متن کامل

Improvement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment

The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...

متن کامل

Analyzing and Comparing Energy and Exergy of POXR and SMR Reactors for Producing Hydrogen from Methane Gas

The POXR and SMR methods adopted in producing hydrogen from methane gas are simulated and exergy analysis of both the processes are run for comparison. The effective parameters of the feeding materials ratio and the system temperature for maximizing hydrogen production and increasing efficiency are assessed here. Influenced by the changes in these parameters the unit efficiency is increased up ...

متن کامل

Performance of Biological hydrogen Production Process from Synthesis Gas, Mass Transfer in Batch and Continuous Bioreactors

Biological hydrogen production by anaerobic bacterium, Rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas (CO) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003